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ABSTRACT

The Cassini spacecraft’s Grand Finale orbits provided a unique opportunity to probe Saturn’s gravity

field and interior structure. Doppler measurements (Iess et al. 2019) yielded unexpectedly large values

for the gravity harmonics J6, J8, and J10 that cannot be matched with planetary interior models

that assume uniform rotation. Instead we present a suite of models that assume the planet’s interior

rotates on cylinders, which allows us to match all the observed even gravity harmonics. For every

interior model, the gravity field is calculated self-consistently with high precision using the Concentric

Maclaurin Spheroid (CMS) method. We present an acceleration technique for this method, which

drastically reduces the computational cost, allows us to efficiently optimize model parameters, map

out allowed parameter regions with Monte Carlo sampling, and increases the precision of the calculated

J2n gravity harmonics to match the error bars of the observations, which would be difficult without

acceleration. Based on our models, Saturn is predicted to have a dense central core of ∼15–18 Earth

masses and an additional 1.5–5 Earth masses of heavy elements in the envelope. Finally, we vary the

rotation period in the planet’s deep interior and determine the resulting oblateness, which we compare

with the value from radio occultation measurements by the Voyager spacecraft. We predict a rotation

period of 10:33:34 h ± 55s, which is in agreement with recent estimates derived from ring seismology.

1. INTRODUCTION

Although Saturn’s deep interior was not a primary target of the Cassini spacecraft’s 13-year mission monitoring

the Saturnian system, the final phase of the mission provided unprecedentedly precise measurements of the planet’s

gravitational field (Iess et al. 2019). This phase, from April 23 to Sept. 15, 2017, culminated in 22 Grand Finale

orbits, during which the Cassini spacecraft dived between the planet and its innermost ring. These measurements

were contemporaneous with the ongoing Juno mission, which is providing analogous measurements for Jupiter (Folkner

et al. 2017). As a result of both studies, the measured gravity fields are far more precise than ever before, warranting

a closer look at the theory and numerical techniques linking the observed gravity to the interior density structure of

the planet. Here we present models of Saturn’s interior structure and interior rotation rate, matched to the Cassini

measurements, along with an acceleration technique for the Concentric Maclaurin Spheroid (CMS) method (Hubbard

2013) for calculating a self-consistent shape and gravity field.

Prior to Cassini’s Grand Finale, the best determination of Saturn’s gravity field was from earlier flyby missions and

from perturbations of the orbits of Saturn’s natural satellites in combination with the orbit of Cassini itself (Jacobson

et al. 2006). However, this yielded significant measurements of only the first three even zonal harmonics of the field,

J2, J4 and J6. By contrast, X-band Doppler measurements during five of the 22 Grand Finale orbits produce a fit

with significant determination of even zonal harmonics up to J12, as well as odd zonal harmonics J3 and J5 (Iess et al.

2019).

The distribution of mass within a planet depends on the equation of state of hydrogen-helium mixtures at high

pressures (Militzer & Hubbard 2013), as well as the radial distribution of heavier elements (Soubiran & Militzer 2016).
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The interior density distribution influences the observed structure of the gravity field through deviations from spherical

symmetry arising from rotation and tides. Thus, the measured field can place constraints, albeit non-uniquely, on the

internal structure of the planet. For the rapidly rotating Jovian planets, such terms are primarily determined by the

balance between centrifugal and gravitational forces. In the absence of internal dynamics, the density distribution

and resulting gravity field are axisymmetric and north-south symmetric, implying that only even zonal harmonics J2n
contribute to the gravitational potential.

If a planet in hydrostatic equilibrium rotates uniformly like a solid body, the magnitudes of even zonal harmonics

decay as |J2n| ∼ qnrot, where qrot is the ratio of the centrifugal and gravity accelerations at the equator. The J2n of

Jupiter measured by Juno spacecraft are broadly consistent with this relationship (Folkner et al. 2017), meaning that

it is possible to find models with a uniform rotation rate that match the observed J2n, at least in the absence of other

constraints, from the hydrogen-helium equation of state and atmospheric composition. However, Fig. 1 illustrates how

the observed even moments J8 and higher for Saturn deviate significantly from the expected relationship. Iess et al.

(2019) demonstrated that these observations cannot be reproduced with models that assume uniform rotation, and

that deep differential rotation (Hubbard 1982) is required instead. In this paper we expand upon the interpretation

of Iess et al. (2019) and introduce new analytical tools for high-precision gravity modeling.

1.1. Differential Rotation

Over many years prior to and including the duration of the Cassini mission, optical tracking of clouds has revealed

large-scale zonal wind currents with respect to the average Saturn atmosphere, in particular a pronounced eastward

jet centered on the equator (Sanchez-Lavega et al. 2000; Garćıa-Melendo et al. 2011). However, prior to the gravity

measurements discussed here, the data were insufficient to constrain the depth of such zonal flows, and their effects

were not considered in previous modeling studies of Saturn’s interior (Helled & Guillot 2013; Nettelmann et al. 2013).

With the Grand Finale gravity data, it becomes possible to test a model in which the cloud-level zonal wind belts are

mapped onto cylinders that extend to great depths. If the zonal-wind velocity profile continues to depths of many

scale heights, it will affect the observed gravity field in two ways. First, it modifies the axisymmetric gravitational

field, and thus changes the even J2n from the values expected for a uniformly rotating body with identical internal

structure (Hubbard 1982). Second, to the extent that the velocity profile is not north-south symmetric, there arises
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Figure 1. Comparison of the gravity harmonics measured for Jupiter and Saturn with predictions from models assuming uniform
rotation throughout the entire interior of both planets. The deviations are small for Jupiter while substantial discrepancies
emerge for Saturn. This illustrates that the effects of differential rotation are much more important for Saturn.
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a corresponding asymmetry in the gravity field, manifesting itself in non-zero odd Jn (Kaspi 2013). The values of J3
and J5 reported by Iess et al. (2019) thus exhibit the north-south asymmetric component of the differential rotation.

There are currently two basic methods for incorporating differential rotation into gravity models. The first is to

approximate the wind profile as rotation on cylinders, which can be described using potential theory (Hubbard 1982)

and can therefore be integrated directly into the potential used in the CMS simulation (Wisdom & Hubbard 2016).

This method has the benefit of being fully self-consistent; the dynamic contribution to the potential modifies the

shape of the equipotential surfaces, which feeds back into the calculated gravitational field. The downside is that the

wind profile must be constant on cylindrical surfaces and thus cannot decay inward, as would be expected due to

interactions with the magnetic field as hydrogen becomes increasingly more conductive with increasing pressure (Cao

& Stevenson 2017). For instance, winds at high latitude could not be included in this method, because they would

correspond to cylinders extending all the way through the center of the planet. Differential rotation on cylinders is also

north-south-symmetric by definition, so the odd Jn are identically zero and cannot be modeled. The models presented

in this paper are subject to these limitations.

The second method starts with a gravity solution assuming uniform rotation, using CMS or a similar method, and

then uses the thermal wind equation (Kaspi 2013; Galanti et al. 2017) or the gravitational thermal wind equation (Kong

et al. 2013) to calculate a correction to the density and gravitational moments. While this introduces additional

approximations and does not produce a self-consistent solution for the gravitational field, it allows for more flexible

wind fields, including cylinders of finite depth and flows with north-south asymmetries. Iess et al. (2019) includes

calculations in which the observed Jn are calculated with a decaying wind profile based on the observed cloud-level

winds.

Nevertheless, the models with differential rotation on cylinders that do not decay with depth are an important class of

endmember models to consider for two reasons. They fit all even gravity moments measured by the Cassini spacecraft

and they are fully self-consistent, which means that predictions for the core mass, composition of the envelope and

rotation profile will be obtained from just one theory.

1.2. Interior Model Background

Interior models of Saturn, like the ones presented here, have previously been fitted to gravity data from Voyager

(Gudkova & Zharkov 1999; Guillot 1999; Saumon & Guillot 2004) and pre-Grand Finale Cassini data (Helled &

Guillot 2013; Nettelmann et al. 2013). In all cases they take into account a reduction of helium mass fraction (Y ) in

the outer envelope arising from the immiscibility and rainout of helium (Stevenson & Salpeter 1977), although there

are some differences in the degree of rainout considered. The models differ primarily in the material equations of state

used, whether the heavy element concentrations (Z) are homogeneous or inhomogeneous between the inner and outer

envelope, and whether they consider differential rotation. The range of predicted core masses decreased from ∼10 – 25

to ∼5 – 20 Earth Masses when models were fitted to Galileo-era and pre-Grand Finale Cassini gravity data (Fortney

et al. 2016), and some models considering inhomogeneous Z had no central core at all (Helled & Guillot 2013).

One persistent issue for modelling Saturn’s interior has been the uncertainty of the planet’s deep rotation rate, due to

the near-perfect alignment of the magnetic field dipole with the rotation axis. Given this uncertainty, we constructed

ensembles of models for four published rotation periods: 10:32:45 h (Helled et al. 2015), 10:39:22 h (Desch & Kaiser

1981), 10:45:45 h (Gurnett et al. 2005), and 10:47:06 h (Giampieri et al. 2006). We also considered a very short

rotation period of 10:30:00 h in order to make the following calculation more robust. An independent constraint on

the rotation are measurements of the planet’s degree of flattening (oblateness) (Lindal et al. 1985). In Section 3.2,

we use this information to derive a new estimate for Saturn’s deep rotation period that is fully consistent with our

interior models, CMS method, and the Voyager oblateness measurements.

2. METHODS

2.1. Interior models

Since planets cool by convection, models are typically constructed under the assumption that most regions in their

interiors are adiabatic. However, novel ideas based on double-diffusive convection have also been considered (Leconte

& Chabrier 2013; Nettelmann et al. 2015). One example of non-adiabatic behavior occurs at high pressure, where

hydrogen and helium are predicted to become immiscible because hydrogen turns metallic while helium remains an

insulating fluid (Stevenson & Salpeter 1977), leading to a region of helium rain. Following earlier work (Wahl et al.

2017c; Iess et al. 2019), we assume four-layer models with an outer molecular and an inner metallic envelope, separated
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Figure 2. Illustration of the four-layer models for Saturn’s interior that we constructed in this work. We assume an outer
molecular and an inner metallic envelope, separated by a helium rain layer, with a dense core at the center of the planet.

by a helium rain layer, along with a dense core at the center of the planet, as illustrated in Fig. 2. In both envelope

layers, an adiabat consistent with ab initio simulations of hydrogen-helium mixtures (Vorberger et al. 2007; Militzer

2013; Militzer & Hubbard 2013) is determined. Each adiabat is characterized by an entropy, S, a helium mass fraction,

Y , and a mass fraction of heavy elements, Z. We adopt the phase diagram for hydrogen-helium mixtures as derived

by Morales et al. (2009), and assume that helium rain occurs wherever the P -T barotrope falls within the region of

immiscibility in Fig. 3.

We treat the helium rain layer as a smooth transition from the parameters in the outer envelope (Smol, Ymol, Zmol)

to inner envelope (Smet, Ymet, Zmet) across a range of pressures P1 to P2, defined by the intersections of the adiabat

with the immiscibility curve. A summary of our model parameters is given in Tab. 1. A collection of representative

barotropes are shown in Fig. 3.

Various core masses and radii are considered, but are not independent, since the total mass of the core and envelope

must match that of Saturn. We first assumed fractional radius of 0.2 and later refined the core radii by assuming either

a terrestrial iron-silicate composition (0.325:0.675) or a solar iron-silicate-water ice composition (0.1625:0.3375:0.5).

We find the fractional core radii of rC=0.188 and 0.231 respectively to be consistent with these two compositions.

We derived these core radii by adopting the additive volume rule for homogeneous mixtures in combination with the

equations of state for iron, MgSiO3 and water ice reported in Seager et al. (2007) and Wilson & Militzer (2014) that

relied on experimental data and results from ab initio simulations.

For each set of model parameters, the CMS method finds a shape and gravitational field for the planet consistent

with a prescribed rotation rate.

The distribution of helium across the rain layer is represented by a gradual gradient with depth between Ymol and

Ymet. Thus a value of Ymol, up to the solar helium fraction Y=0.274 (Lodders 2003), is considered and a consistent

Ymet above the solar fraction is determined such that total, planet-wide helium mass fraction is conserved. The entropy

of the outer envelope adiabat Smol is chosen to be consistent with the observed temperature 142.7 K at 1 bar (Lindal

et al. 1981).

2.2. Concentric Maclaurin Spheroid Method
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Table 1. Parameters and constraints in our Saturn models

Smol Entropy H-He gas throughout the molecular layer.

Constrained to match Saturn’s 1 bar temperature of 142.6 K (Lindal et al. 1981)

Ymol Helium mass fraction in the molecular layer. Constraint: Ymol ≤ Ysolar = 0.2741 (Lodders 2003).

Zmol Mass fraction of heavy Z elements in the molecular layer.

Smet Entropy H-He gas throughout the metallic layer. Smet ≥ Smol

Ymet Helium mass fraction in the metallic layer. Adjusted as function of Ymol

to keep the overall composition of the envelope at Ysolar.

Zmet Mass fraction of heavy Z elements in the metallic layer. Constraint: Zmet ≥ Zmol.

P1 Starting pressure of the helium rain layer (high pressure end of molecular layer)

P2 Ending pressure of the helium rain layer (low pressure beginning of metallic layer)

Core mass We assumed a compact core composed of heavy elements

with a sharp boundary to the metallic layer, with an equatorial radius, rC .

ω(lk) Angular frequency for cylinder of radius, lk. Constraint: ω(lk < 0.7) = ω0.
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Figure 3. Temperature-pressure phase diagram of hydrogen-helium mixtures. The red lines show the interior models with
P=10:39:22 h and rC=0.2 in relation to the shaded region where the two fluids are predicted to become immiscible (Morales
et al. 2013). The thin blue lines show various adiabats of an H-He mixture for a helium mass fraction of Y=0.245 (Lodders
2003). The circles mark the beginning and the end of the immiscibility regions assumed in different models.

The literature on the problem of the shape and gravitational potential of a liquid planet in hydrostatic equilibrium

(also referred to as the theory of figures, TOF) extends back centuries Jeans (2009). Most geophysical implementations

of TOF use a perturbation approach, by finding the response, to various orders, to a small perturbation of the potential

from spherical symmetry. For a discussion of perturbation TOF, see Zharkov & Trubitsyn (1978).

Hubbard (2012) developed a non-perturbative numerical method, based on potential theory (Tassoul 2015), for

calculating the self-consistent shape and gravitational field of a constant density, rotating fluid body to high precision.

This method was generalized to approximate a barotropic pressure-density relationship, discretizing the interior into

a series of concentric constant-density (Maclaurin) spheroids (CMS) by Hubbard (2013). The spheroids comprise
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constant-potential level surfaces, deformed in two dimensions for permanent rotation about a fixed axis, and in three

dimensions if a tidal potential is included (Wahl et al. 2017b). Thus, the surface of every spheroid is a surface of

constant potential, density, pressure, temperature, and composition. The CMS method is non-perturbative and thus

more general than methods that approximate the level surfaces as perturbed ellipsoids. The CMS method has been

benchmarked against an independent, non-perturbative numerical method (Wisdom & Hubbard 2016).

In this paper, we introduce an accelerated version of the CMS method, in which the shape of a subset of spheroids

is calculated explicitly, with the shape of most spheroids obtained through interpolation of the radius. As we will

show, this leads to a much more efficient algorithm for the same level of precision of the predicted gravity field. The

acceleration technique enables us to construct ensembles of Saturn’s interior models with Monte Carlo sampling and

to perform proof-of-principles CMS calculations with a large number of layers (NL) ∼ 105. Both would not have been

feasible without acceleration of the method.

As noted by Debras & Chabrier (2018), while a model with a given number of spheroids generates an external gravity

potential to a numerical precision of at least 10−12 (much better than Juno or Cassini measurement precision), the

precision to which it approximates the smooth ρ(P ) barotrope is limited by the number of layers. This leads to an NL-

sensitivity of the generated gravity potential that is larger than the uncertainty in the measured potential, as initially

quantified by Wisdom & Hubbard (2016). The acceleration to the CMS method helps us rectify any uncertainty from

discretization, allowing a much smoother discretization of the barotrope while the more computationally expensive

part of the method is kept to a manageable number of layers.

2.3. Self-consistent Shape and Gravity with CMS

The CMS technique, based on potential theory, allows one to describe the interior of planets under the assumption

of hydrostatic equilibrium. Baroclinic effects are excluded from consideration, which implies that the temperature of

a fluid parcel is only a function of its pressure, T (P ). While this is well justified in the deep interior, it is more of an

approximation at the 1 bar level when we relate the temperature of fluid parcels near the equator with those in the

less irradiated polar regions. Under this assumption, we combine T (P ) with a realistic equation of state, ρ = ρ(P, T ),

of a mixture of hydrogen, helium, and a small amount of heavier elements in order to establish a barotrope, a unique

density-pressure relation ρ(P ) = ρ(P, T (P )). This assumes knowledge of the composition as a function of pressure.

In hydrostatic equilibrium, the pressure, P , the mass density, ρ, and the total potential, U , at any point in the

planet’s interior are related by

∇P = ρ ∇U. (1)

The sign of the potentials is chosen such that forces are given by F = +∇U . In the co-rotating frame of the planet,

the total potential, U , includes contribution from the self-gravity, V , and the centrifugal term, Q,

U = V +Q, (2)

which we discuss in detail in the two following sections.

For a planet with a uniform rotation rate, it is convenient to describe the relative strength of of the rotational

perturbation in terms of the parameter

qrot =
ω2a3

GM
, (3)

where ω is the rotation rate, G is the universal gravitational constant, and M and a are the mass and equatorial radius

of the planet. Since CMS theory is non-perturbative, in principle the results are valid to all powers of qrot.

It follows that the pressure, density and potential can be expressed in dimensionless, planetary units (PU):

Ppu ≡
a4

GM2
P ,

ρpu ≡
a3

M
ρ , and

Upu ≡
a

GM
U.

(4)

We label the NL spheroids with the indices i = 0, 1, 2, . . . , NL − 1, with i = 0 corresponding to the outermost

spheroid and i = NL − 1 corresponding to the innermost spheroid. All models presented here are symmetric with



Models of Saturn’s Interior 7

respect to the axis of rotation. We neglect any non-axisymetric contributions to potential, such as tidal perturbation

by a satellite (Wahl et al. 2017a, 2016). So the shape of every spheroid i can be described by a function ri(µ) where

ri is the distance from the planet’s center and µ = cos(θ) is a function of the polar angle, θ. We assume throughout

its interior, the planet is north-south symmetric, which implies, ri(µ) = ri(−µ).

It is convenient to introduce a normalized shape function,

ζi(µ) ≡ ri(µ)

ri(0)
≤ 1 (5)

where ri(0) is equatorial radius of ith spheroid. ζi(µ) will approach unity for non-rotating planets. Furthermore,

we define λi ≡ ri(0)/r0(0) to be the ratio of the equatorial radius of the ith to the outermost spheroid. Note that

r0(0) ≡ a. These choices are illustrated in Fig. 4.

Axis of Rotation

Equator

Spheroid i

i =0

ri(μ)=ri(0)ζi(μ)

ri(μ=0)=aλi
ζi(μ=0)=1

μ=+1

μ=−1

r0(μ=0)=a
ζ0(μ=0)=1
         λ0=1

Figure 4. Illustration of the CMS method and variable definitions.

Hydrostatic equilibrium requires that the density increases monotonically with depth and thus with spheroid index

i. We can define δi to be the density difference between two adjacent spheroids,

δi =

ρi − ρi−1, i > 0

ρ0, i = 0.
(6)

This parameterization of density has the added benefit of naturally handling discontinuities in ρ, as would be expected

for compositionally distinct layers.

We represent the shape functions, ζi(µ), on a grid of Nµ points, µm, such that ζim ≡ ζi(µm). The CMS method

refines the shape functions through an iterative procedure until the potential on every spheroid surface is constant and

the equation of hydrostatic equilibrium is satisfied (Eq. 1). In the current implementation, we keep equatorial radii of

every spheroid fixed, ri(0) = λia, while the remaining spheroid points are adjusted until a self-consistent solution has

been found.

We start the iterations with all spheroids to be perfect spheres and thus initialize all normalized shape functions to

unity, ζim = 1. A given set of spheroids defines a mass distribution and thus a gravity field. We can define a function

Ui(ζ, µ) to calculate the total potential on the surface of spheroid i. The spheroid shape has converged if Ui(ζ, µ) is

the same for all µ. However, at the beginning there will always be significant deviations that we can encapsulate in a

function,

fim(ζim) ≡ Ui(ζim, µm)− Ui(1, 0), (7)

that compares the potential at ζim and µm with that of reference point on the equator of spheroid i. We compute the

derivative f ′im(ζim) = dfim(ζim)/dζim analytically and employ a single Newton step to derive an improved value for
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ζim from

ζ
(new)
im = ζim −

fim(ζim)

f ′im(ζim)
. (8)

Once the points on all spheroids have been updated, we recalculate the zonal gravitational moments, Jn, in order

to obtain an updated gravity field, Ui. Assuming hydrostatic equilibrium (Eq. 1), we successively update the pressure

on every spheroid

P
(new)
i = P

(new)
i−1 + ρi−1 (Ui − Ui−1). (9)

starting from P0 that we keep fixed at 0.1 bar. This value is consistent with the observed gravity harmonics that were

normalized to an equatorial radius of a = 60330 km (Iess et al. 2019).

Next we update the density of every spheroid,

ρ
(new)
i = ρ( (Pi+1 + Pi)/2 ), (10)

by evaluating the prescribed barotrope function, ρ(P ), for the average of the pressure at the upper and the lower

boundaries of a particular spheroid.

After every improvement of the spheroid shapes, ζim, an update step for the gravity harmonics, the potential,

pressure, and spheroid densities follows. These two steps are repeated until all of the moments, Jn, have converged

such that the difference between successive iterations falls below a specified tolerance. Occasionally, we find the

convergence of the algorithm to be slow if the shapes oscillate back and forth between two states. We detect such

events and bypass them by inserting a regula falsi step.

It is also necessary to have at least one free parameter for a subset of the layers in order to obtain the correct total

mass of the CMS model. In our implementation we modify the mass of the central core to achieve this balance.

2.4. Gravitational Potential

The gravitational potential at a vector coordinate, r, due to an arbitrary mass distribution is given by

V (r) = G

∫
d3r′

ρ(r′)

|r− r′|
. (11)

In the case of an axisymmetric mass distribution with the center of mass at the origin, the potential can be expanded

in the following form (Zharkov & Trubitsyn 1978),

V (r, µ) =
G

r

∞∑
n=0

Pn(µ)

∫
dτ ′ ρ(r′)Pn(µ′)

(
r′

r

)n
(12)

=
GM

r

[
1−

∞∑
n=1

(a/r)
2n
J2nP2n(µ)

]
. (13)

where dτ ′ = r′2dr′ dµ′ dφ′. Pn are the Legendre polynomials of order n. The gravity harmonics are given by

Jn = − 2π

Man

+1∫
−1

dµ

rmax(µ)∫
0

dr rn+2 Pn(µ) ρ(r, µ) . (14)

J0 represents the integral over all mass and has been normalized to equal −1 by convention.

Following Hubbard (2013), the self-gravity contribution to the potential is found by expanding Eq. (12) in terms of

the interior zonal harmonics, Ji,n, and the external zonal harmonics, J ′i,n and J ′′i,n, for every spheroid i and order n.

At the surface of the planet, the observable zonal harmonic is the sum of the moment from every spheroid.

For convenience, the harmonics are normalized by the equatorial radius of the corresponding spheroid

J̃i,n ≡
Ji,n
λni

and J̃ ′i,n ≡ J ′i,nλ
(n+1)
i . (15)

Following the derivation in Hubbard (2013), we find the normalized interior harmonics

J̃i,n = − 1

n+ 3

2π

M
δiλ

3
i

+1∫
−1

dµ Pn(µ) ζi(µ)(n+3) (16)
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and the exterior harmonics

J̃ ′i,n = − 1

2− n
2π

M
δiλ

3
i

+1∫
−1

dµPn(µ) ζi(µ)(2−n) (17)

with a special case for n = 2

J̃ ′i,n = −2π

M
δiλ

3
i

+1∫
−1

dµPn(µ) log(ζi) (18)

and

J ′′i,0 =
2πδia

3

3M
, (19)

where M is the total mass of the planet given by

M =
2π

3

N−1∑
i=0

δi λ
3
i

+1∫
−1

dµ ζi(µ)3 (20)

With this description of the planet’s self-gravity in terms of Ji,n, J ′i,n and J ′′i,n, the expansion of of Eq. 12 for a point

on surface i yields

Vi(ζi, µ) = − 1

ζiλi

N−1∑
j=i

∞∑
n=0

J̃j,n

(
λj
λiζi

)n
Pn(µ) +

i−1∑
j=0

∞∑
n=0

J̃ ′j,n

(
λiζi
λj

)n+1

Pn(µ) +

i−1∑
j=0

J ′′j,0λ
3
i ζ

3
i

 . (21)

The gravitation potential on the equator of the outermost spheroid is given by

Vi=0(1, 0) = −
∞∑
n=0

Pn(0)Jn, (22)

where

Jn =

N−1∑
i=0

λni J̃i,n (23)

are the standard zonal gravity harmonics of the observable surface field in Eq. 14. In practical application of the CMS

method, one finds that results converge rapidly with increasing polynomial order, n. So we typically terminate the

sum over n at 16 or 32.

2.5. Centrifugal Potential

We assume potential theory throughout this work and we are thus restricted to studying two cases: uniform rotation

(ω = constant) and differential rotation on cylinders where the angular frequency, ω(l), is solely a function of the

distance from the rotation axis, l. An illustration is shown in Fig. 5. Everywhere the centrifugal force, ~F = lω2~el, is

perpendicular to the axis of rotation, which we assume to be the z axis. In potential theory, this force is represented

by the centrifugal potential,

Q =

∫ l

0

dl′ l′ ω(l′)2 (24)

If ω is constant, one recovers the usual term Q(l) = 1
2 l

2ω2. It is not possible to give the cylinders a finite depth, H,

within potential theory. Calculations with finite H can be performed with the thermal wind equation (Kaspi & Galanti

2016; Kaspi et al. 2017, 2018) or the gravitational thermal wind equation (Kong et al. 2013). If one wanted to give

the cylinders a finite depth or introduce any other z dependence, ω(l, z), one would inevitably introduce spurious force

terms parallel to the z direction because the derivative ∂Q/∂z is no longer zero. This force would not be consistent with

the assumption that the centrifugal force should be perpendicular to the axis of rotation (Tassoul 2015). Therefore,

the cylinders in our calculations penetrate through the equatorial plane of the planet. As we will later see, this allows

us to reproduce the observed winds in the equatorial regions but not those at higher latitudes, because they would

involve very deep cylinders with too much mass.
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Most simply, one can represent the angular frequency by an expansion in even powers of l,

ω(l) = ω0 + c2l
2 + c4l

4 + c6l
6 + c8l

8 + . . . , (25)

where ω0 is the rotation rate in the deep interior and the expansion coefficients, c2i, present the differential part.

These coefficients need to be optimized jointly with the parameters of our interior model in order to reproduce the

gravity coefficients that were measured by the Cassini spacecraft. While the expansion in Eq. 25 may be convenient

for analytical work, we found this functional form to be impractical for numerical optimizations. If one changes one

coefficient in the expansion, rotation of all fluid parcels is affected. Changing the rotation rate in a small interval

of l, requires changing several coefficients in a coordinated fashion. Such inter-dependencies are detrimental for the

efficiency of any optimization algorithm. We therefore represent the angular frequency, ω(l), from l = 0 . . . 1 by a

spline function with a fixed number of knots, lk, on which we adjust the frequency ω(lk). In this formulation, a change

of ω(lk) will only affect fluid parcels between lk−1 and lk+1, which greatly simplifies the optimization.

We obtained good results with 11 and 21 knots. Furthermore, in our Monte Carlo (MC) calculations and simplex

optimizations, we observed that the angular frequency ω(lk) for radii interior to lk < 0.7 never deviated from ω0,

presumably because the associated cylinders were so deep and involved too much mass. Based on these observations,

we exclude the ω(lk) values for small l from the optimization and set ω(lk < 0.7) = ω0 instead.

2.6. Acceleration of the CMS method

Among numerical methods to solve partial differential equations (PDE), one distinguishes between finite difference

and finite element techniques (Morton & Mayers 2005). In the former approach, one approximates the derivatives in

the PDE by computing differences between two adjacent points on the integration domain. In the more sophisticated

finite element approach, one also considers the properties of the interior of every integration interval. This typically

enables one to derive a more accurate solution than is possible with finite difference approaches, when the two methods

are compared for the same grid resolution.

The acceleration of the CMS method, that we will now introduce, is comparable to switching from the finite difference

to a finite element approach. The goal is to reduce the primary discretization error of the CMS methods that arises

from the approximation that the density changes in a step-wise fashion from one spheroid to the next. The acceleration

becomes possible because each CMS iteration has two parts that have very different computational costs. The expensive

part (Eq. 8) involves updating the shape of every spheroid represented by the variables ζjm for a given gravity field.

In the second, comparatively cheap step, one updates the interior and exterior gravity harmonics in Eqs. 16-19 for

the current spheroid geometry. As it turns out, the accuracy of the computed gravity harmonics depends sensitively

on the number of spheroids, NL, which determines how precisely the smooth density profile in the planet’s interior is

approximated by the step-wise representation of the nested constant-density spheroids.

The core idea behind the acceleration is to only compute the spheroid shape explicitly at every nint layers. For the

(nint−1) layers in between, we interpolate the shape functions ζim as a function of λi at constant µm. This ζim update

is the most expensive part of the CMS calculation and scales like NL ×Nµ while the other parts of the calculation all

scale like NL. Therefore, we evaluate the other parts of the calculation over the entire set of NL spheroids as before.

The cost of the spline interpolation is negligible compared to the explicit updates of the ζim points according to Eq. 8.

The inner and outermost spheroids are always updated explicitly to avoid extrapolations.

Instead of updating ζim for NL layers, we only need to update NL/nint layers 1. The reduction in computational

cost can be reinvested into increasing the total number of layers. As we will show, the accuracy of an accelerated

CMS computation with a total layer number of Nacc
L = Norg

L × nint will be much higher than that of the original

calculation of Norg
L layers, while both have comparable computational cost. The computation of all gravity harmonics

is be performed with all Nacc
L layers, which significantly improves the accuracy compared with the original calculations

with Norg
L layers.

In order to analyze the accuracy and the performance of our acceleration technique, we constructed a representative

model for the interior structure of Saturn. For this analysis, we assume uniform rotation and performed calculations

for a variety of layer numbers with interpolation parameter, nint, ranging from 2 to 128. The results of the original

method without acceleration are recovered for nint = 1. The resulting gravity coefficients that were computed with and

without acceleration are compared in Tabs. 2 and 3 for different layer numbers. One finds that all gravity harmonics

1 To keep the following analysis simple, we write NL/nint for the number of layers that we treat explicitly while it is in fact (NL−1)/nint+1.
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Figure 5. Average of the rotation profiles in our suite of Saturn interior models that match the observed even gravity harmonics.
It shows that differential rotation must be several thousands of kilometers deep. Our models reproduces the Eastward equatorial
jet that rotates about 4% faster than the deep interior. The inset shows an illustration of the cylinders. The rotation frequencies
inferred by tracking the clouds in Saturn’s visible atmosphere (Sanchez-Lavega et al. 2000; Garćıa-Melendo et al. 2011) are shown
for comparison.

converge smoothly as a function of layer number, which allows one to extrapolate to NL → ∞. We infer Jn(∞) by

employing the following semi-linear fit function:

log |∆Jn(NL)| ≡ log |Jn(NL)− Jn(∞)| = A−B log[NL] (26)

For every gravity coefficient, Jn, we adjust the fit parameter Jn(∞) and derive the linear fit coefficients A and B until

we have obtained the best possible match to the Jn(NL) data set. The extrapolated values, Jn(∞), are included in

Tab. 3.

Table 2. Gravity coefficients predicted without acceleration scheme for different number of layers, NL. A representative

Saturn interior model with uniform rotation was used for this convergence analysis.

NL J2 J4 J6 J8 J10 J12 J14 J16

16 21058.747614 -1308.699233 119.572180 -13.513972 1.750222 -0.249135 0.037999 -0.006108

Table 2 continued on next page
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Table 2 (continued)

NL J2 J4 J6 J8 J10 J12 J14 J16

32 17740.199991 -1047.173049 92.601757 -10.209559 1.294184 -0.180542 0.027002 -0.004258

64 16789.968480 -978.984988 85.931473 -9.416858 1.186999 -0.164690 0.024500 -0.003843

128 16552.657945 -962.339808 84.321088 -9.226705 1.161402 -0.160918 0.023907 -0.003745

256 16493.667469 -958.249449 83.927467 -9.180331 1.155164 -0.159999 0.023762 -0.003721

512 16478.115263 -957.156333 83.821482 -9.167812 1.153482 -0.159752 0.023724 -0.003715

1024 16474.382140 -956.897102 83.796519 -9.164871 1.153087 -0.159694 0.023714 -0.003713

2048 16473.437419 -956.831274 83.790168 -9.164122 1.152986 -0.159679 0.023712 -0.003713

4096 16473.201201 -956.814816 83.788580 -9.163935 1.152961 -0.159675 0.023712 -0.003713

8192 16473.142127 -956.810701 83.788183 -9.163888 1.152955 -0.159674 0.023711 -0.003713

Table 3. Gravity coefficients for the Saturn interior model in Tab. 2 predicted with acceleration factor nint = 16. The first

column denotes the number of CMS layers that were treated explicitly and the second specifies the total layer number. The last

row contains the extrapolated values for N tot
L →∞.

N tot
L /nint N tot

L J2 J4 J6 J8 J10 J12 J14 J16

8 128 16538.897354 -961.501994 84.237944 -9.215607 1.159703 -0.160646 0.023863 -0.003738

16 256 16498.268862 -958.176106 83.922106 -9.180301 1.155204 -0.160008 0.023764 -0.003721

32 512 16478.086394 -957.150893 83.821249 -9.167769 1.153475 -0.159751 0.023723 -0.003715

64 1024 16474.446344 -956.898550 83.796655 -9.164888 1.153089 -0.159694 0.023714 -0.003713

128 2048 16473.448194 -956.831549 83.790193 -9.164125 1.152986 -0.159679 0.023712 -0.003713

256 4096 16473.202955 -956.814864 83.788584 -9.163936 1.152961 -0.159675 0.023712 -0.003713

512 8192 16473.142447 -956.810710 83.788183 -9.163888 1.152955 -0.159674 0.023711 -0.003713

1024 16384 16473.127416 -956.809674 83.788084 -9.163877 1.152953 -0.159674 0.023711 -0.003713

2048 32768 16473.123665 -956.809415 83.788059 -9.163874 1.152953 -0.159674 0.023711 -0.003713

∞ ∞ 16473.122342 -956.809322 83.788050 -9.163873 1.152952 -0.159674 0.023711 -0.003713

Having access to extrapolated values, Jn(∞), allows us to study how the discretization error decays with increasing

NL and to evaluate the effectiveness of the acceleration scheme. All curves in Fig. 6 show that the discretization error

decays quadratically as N−2L . The top panel shows the behavior of the original method before any acceleration was

introduced. For J12, one finds that only 32 layers are needed for the discretization error to be less than the error bar

of the Cassini measurements because the uncertainty is comparatively large for this gravity coefficient. Conversely

J2 has been measured with a much higher precision and even CMS calculations with 4096 layers are not sufficient to

meet the accuracy of the measurements.

The middle panel of Fig. 6 shows the discretization error of accelerated CMS method with acceleration factor,

nint = 16. The results show that calculations with 512 explicit layers (N tot
L = 16384) are sufficiently accurate to reduce

the discretization error of computed gravity coefficients below the uncertainty level of the Cassini measurements. This

demonstrates that with the acceleration technique is very effective and enables us to match the accuracy of Juno and

Cassini measurements within the CMS framework.

In the lower panel of Fig. 6, the discretization error of different Jn have been combined in order to compare results

for different acceleration factors, nint. The figure confirms that an increase in nint leads to a significant reduction of

the discretization error when results are compared for the same number layers that are treated explicitly, N tot
L /nint,

which is also a measure of the computational cost.

The lower panel of Fig. 6 also compares the discretization error that arises from two different λ grids. The choice of

λ grid has an impact on how many spheroids are needed to reach a certain level of accuracy. We show results derived

with an earlier λ grid from Wahl et al. (2017a), which was constructed by employing a denser mesh of spheroids in
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Figure 6. Discretization error of the gravity harmonics calculated with the CMS method as a function of the number of
spheroids. The horizontal lines show the 1-σ uncertainties of the Cassini measurements of the even gravity harmonics, Jn.
The top panels show how the errors decay with increasing number of layers for calculations without acceleration. The mid
panel displays results obtained with the accelerated CMS method where only one in nint = 16 layers are treated explicitly. 512
explicit layers (total of 8192) are sufficient to reduced the error in all calculated gravity harmonics below the uncertainties of
the observations. Without the acceleration, well over 4000 layers is required for this level of precision, as the top panel shows.
The bottom panel compares results derived with different acceleration factors, nint. For nint = 16, the effects of two different λ
discretization schemes are compared.

the atmosphere and outer layers of the planet where the density changes the most. We then developed an alternate

approach with the aim of constructing an optimal λ grid that further reduces the discretization error. This error arises

from contrast in density between two adjacent spheroids. To minimize this error, we construct a λ grid such that the

relative difference in density is the same for all pairs of adjacent spheroids throughout the planet. This automatically

places more layers in the atmosphere, where the density changes most rapidly. We construct our optimized λ grid by

starting from a converged CMS calculation with our original grid, which provides us with series of ρ(λi) points that

we can interpolate. We construct a geometric grid of ρi values that the spans the interval between the lowest and

highest density in our model while keeping ρi+1/ρi constant. We derive our optimized λi grid by solving ρ(λi) = ρi.
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In Fig. 7 and Tab. 4, we compare the original and optimized λ grids. During the optimization, more grid points are

placed in outer region of the planet where the density changes most rapidly. However, the inset of Fig. 7 shows that

the slopes of the two grid functions is very similar near λ = 0. In this region the grid space should be a fraction of the

scale height of the atmosphere.

In limit of Nl →∞, CMS calculations with both λ grids will converge to identical results because the discretization

errors will gradually dimish in every part of the interior. However, an optimized λ grid may approach this limit more

rapidly. The lower panel of Fig. 6 shows that our optimized λ grid reduces the discretization error by a factor of 2.3

when compared to our original grid for the same number of spheroids. For this reason, we employ the optimized grid

in all following calculations.

Table 4. Original and optimized λ grids for an interior

model with 2049 sphoeroids and rC=0.231.

Spheroid index i Original λi Optimized λi

0 1.0000000000 1.0000000000

1 0.9999958561 0.9999966866

2 0.9999912702 0.9999933632

3 0.9999861950 0.9999900322

. . . . . . . . .

2047 0.2316114866 0.2338981435

2048 0.2310000000 0.2310000000

Note—This table is published in its entirety in the elec-
tronic edition of the Astrophysical Journal. A portion
is shown here for guidance regarding its form and con-
tent.
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Figure 7. Comparison of our original and optimized λ grids for an interior model with 2049 spheroids and rC=0.231.

2.7. Planet models with polytrope index 1

Here we revisit standard planetary interior models that approximate the equation of state throughout the interior

by a polytropic equation of state, P (ρ) = Kρ1+1/n with index n = 1. The constant K is adjusted so that planet’s
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total mass equals 1. Under these assumptions, potential and density are proportional and the planet’s surface is given

by P = ρ = 0. Wisdom & Hubbard (2016) studied the properties of such planet models in great detail and compared

the predictions from the consistent level curve (CLC) technique and from the CMS method. Here we present a

comparison with our accelerated CMS approach, which allows us to control density discretization error more carefully.

We benchmark our results against Wisdom & Hubbard (2016) using the identical value of qrot=0.089195487.

In Fig. 8, we show how discretization errors decay with increasing number of spheroids. Overall the behavior is

similar to that of our more realistic Saturn interior model in Fig. 6.
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Figure 8. Discretization error in the gravity harmonics of polytrope index 1 planet models. The error of all gravity harmonics
decays with increasing spheroid number, as we have seen for the Saturn interior models in Fig. 6. All calculations for this figure
were performed with nint = 256.

We choose a acceleration factor of nint = 256 and performed a set of polytrope index 1 model calculations with

increasing precision. The number of explicitly treated layers, NL/nint were varied between 22 and 29, which brought

up the total number of layers to 131072 in our largest calculations, which is an increase of three orders of magnitude

compared to earlier CMS calculations. We analyze how our results improved with increasing layer number and report

the converged digits in Tab. 5. The agreement with the CLC predictions is excellent. All coefficients J2 through J20
agree to 6, 7, or 8 significant digits, which is a better agreement than was reported in Wisdom & Hubbard (2016)

where predictions from the CLC approach and the non-accelerated CMS method were compared.

Table 5. Gravity coefficients for the polytrope index 1 planet

models derived with the accelerated CMS (this work) and

CLC (Wisdom & Hubbard 2016) methods.

Gravity coefficient CMS CLC

102 × J2 1.3988511 1.398851090

104 × J4 −5.318281 −5.318281001093

105 × J6 3.0118324 3.011832290534

106 × J8 −2.1321158 −2.132115710725

107 × J10 1.74067138 1.740671195866

108 × J12 −1.56821961 −1.568219505563

Table 5 continued on next page
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Table 5 (continued)

Gravity coefficient CMS CLC

109 × J14 1.51809944 1.518099226841

1010 × J16 −1.5519853 −1.551985081630

1011 × J18 1.6559259 1.655925984019

1012 × J20 −1.8285783 −1.828574676495

2.8. Parameter Optimization

The primary goal of the model optimization is the generation of Saturn interior models that reproduce the observed

gravity harmonics. The agreement between models and observations is typically expressed in some form of a χ2

function. Here we use,

χ2
J =

5∑
i=1

[
Jobserved
2i − Jmodel

2i

δJobserved
2i

]2
, (27)

where δJobserved
2i are the 1-σ uncertainties in the observations. Typically J2 is measured with much higher precision

than the higher order harmonics. To deal with this imbalance, we find solutions that satisfy Jobserved
2i = Jmodel

2i

exactly by adjusting one model parameter like Zmol or Zmet before χ2
J is evaluated. This optimization is performed for

converged CMS models that have reached hydrostatic balance and have matched the planet’s total mass by adjusting

the core mass.

While Eq. 27 is certainly the most important optimization criterion, there are a number of other well motivated

constraints to consider. For example, one would want to guide to the parameter optimization towards models with

pressures P1 and P2 are close to the assumed immiscibility curve in Fig. 3. From the assumed molecular and metallic

adiabats, we can infer the temperatures T1 and T2 that correspond to both pressures. For both pairs P1-T1 and P2-T2,

we find the closest points on the immiscibility curve, P ∗1 -T ∗1 and P ∗2 -T ∗2 , that minimize the following immiscibility

penalty function,

χ2
H−He =

2∑
i=1

CP

∣∣∣∣P ∗i − PiPi

∣∣∣∣+ CT

∣∣∣∣T ∗i − TiTi

∣∣∣∣ , (28)

before we add the resulting minimum value to the total χ2. CP and CT are weights that must be balanced with those

in other χ2 terms. We set CT /CP = 2. We chose not to square the individual terms in Eq. 28 because, without an

experimental confirmation of our immiscibility curve, we do not want large deviations to enter quadratically. In Fig. 3,

we shows some representative models to illustrate how much variation is in the P1-T1 and P2-T2 in our ensemble of

models. Implicitly the χ2
H−He term also introduces a penalty for metallic adiabats that are too hot to be compatible

with the assumed immiscibility curve.

Upon first introducing differential rotation into our CMS models, we realized that a super-rotating equatorial jet

improved the match to observed gravity harmonics considerably. Furthermore, for l ≥ 0.8, the inferred rotation profile

was compatible with the wind speeds that were derived from tracking the clouds in Saturn’s atmosphere (Sanchez-

Lavega et al. 2000; Garćıa-Melendo et al. 2011). From this point on, we favored models that matched those observations

by introducing the following cloud penalty function,

χ2
clouds = Cclouds

∑
k with lk>0.8

|ωobserved(lk)− ωmodel(lk)| , (29)

where we sum over the knots, lk, in the outer region of our rotation profile that often lead to good agreement with the

cloud tracking observations. Cclouds plays the role of a weight.

Finally we introduce one more penalty function,

χ2
curvature = Ccurvature

∑
all k

[ω′′model(lk)]
2

, (30)

that favors smooth rotation profiles by penalizing large values in the second derivative of our rotational profile.
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Figure 9. χ2
J deviations (see Eq. 27) between the calculated and the observed gravity harmonics during the model optimization

with the simplex algorithm. Only one model optimization (thick solid line) succeeded in converging to a state that matched the
spacecraft measurements well.

We assume Ymet ≥ Ymol and Zmet ≥ Zmol, because we assume that helium rain can only lead to an enrichment of

the metallic layer in helium and in heavy elements (Wilson & Militzer 2010). We also constrain the helium abundance

of the entire envelope to match solar proportions.

We add Eqs. 27 through 30 to obtain one total χ2 function that we employ to optimize the model parameters

in Tab. 1. This turns out to be a very challenging optimization problem, because many parameters are strongly

coupled and some optimization criteria are interdependent. We use the simplex algorithm (Press et al. 2001) for the

optimization since it does not require any derivatives of χ2 with respect to the optimization parameters, which are not

available in analytical form. With this algorithm, it was very challenging to generate models that matched observed

gravity data. In many cases, the algorithm gets stuck in a local minimum2. Fig. 9 shows a couple of examples of the

χ2
J evolution during the simplex optimization. However, in 17 independent cases, the optimization succeeded and we

were able to match the gravity harmonics within the uncertainties of the observations. We subsequently used these

17 solutions as starting points for Markov chain Monte Carlo calculations in order to map out the allowed parameter

regions. We confirmed that all 17 original solutions belong to the same parameter region and one can go smoothly

from one to the other. This provides strong evidence that the entire solution space is connected.

2.9. Effects of an upper atmosphere

All CMS calculations presented so far, start from an outermost spheroid with the pressure of 0.1 bar that was

anchored at the equatorial radius a. We had thereby neglected the effects of the tenuous upper atmosphere that

extends from the 0.1 bar level out into space. To study the effects of this upper atmosphere quantitatively, we added

64, 128, and 256 outer spheroids to CMS calculations with 512, 1024, and 2048 layers, respectively. The number of

the additional spheroids was chosen such that range of pressure extended down to at least 1 mbar. The original outer

spheroid is still associated with a pressure of 0.1 bar and remains anchored at the equatorial radius a. For all spheroids

interior to this spheroid, we update the pressure according to Eq. 9 as we did before. However, for all the additional

exterior spheroids, we update the pressure with decreasing spheroid index according to,

P
(new)
i = P

(new)
i+1 + ρi (Ui+1 − Ui). (31)

For simplicity, we assume an isothermal upper atmosphere with a temperature set to the value at 0.1 bar. In all

other respects the additional exterior spheroids are treated in the same way as the interior spheroids. In principle, the

2 We computed the derivative numerically and tested the BFGS (Jacobs 1977) optimization algorithm but this did not lead to an
algorithm that is more efficient overall because of the cost of computing the derivative with finite differences.
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Table 6. Cor-
rection to the com-
puted gravational
moments due to
upper atmosphere
that extends from
100 to 0.9 mbar.

n 106 ×∆Jn

2 +6.3× 10−3

4 −1.1× 10−3

6 +2.5× 10−4

8 −7.6× 10−5

10 +2.2× 10−5

12 −1.7× 10−6

14 −2.3× 10−6

16 +4.3× 10−7

temperature treatment could be made more realistic but, as we will show, the effects on the computed gravitational

moments are negligible because there is so little mass outside of the 0.1 bar level.

Our extended CMS calculations converged to the same level of accuracy as they had previously. The pressure of

the new outermost spheroid converged to 0.9 mbar. The fractional mass outside of 0.1 bar level was found to be

only 7.5 × 10−8. This mass correction can also be interpreted as a change to the gravity coefficient J0 (see Eq. 14),

which helps one to gauge the magnitude of the correction to the other gravity coefficients. In table 6, we provide

the differences in the gravitational moments between our CMS calculation that included an extended atmosphere to

0.9 mbar and our original calculations that terminate at 0.1 bar. All values decay smoothly with increasing order

n. For all the gravity coefficients that have been determined by the Cassini spacecraft, J2 through J10, one finds

that the correction due to the upper atmosphere is at least 18 times smaller than the uncertainties of the Cassini

measurements (Iess et al. 2019). For this reason, we conclude that our standard CMS calculations starting from the

0.1 bar level are sufficiently accurate for this study.

3. RESULTS

3.1. Predictions for interior parameters

In Fig. 5, we plot the rotational profiles that have emerged from our Monte Carlo calculations. Two prominent

features are common to all models. There is a super-rotating equatorial jet in the equatorial region that rotates up

to 4% faster than the deep interior. This behavior is in agreement with the observed wind speeds from tracking the

cloud motion in Saturn’s visible atmosphere (Sanchez-Lavega et al. 2000; Garćıa-Melendo et al. 2011) and we have

thus favored the sampling of such models by introducing the term χ2
clouds in Eq. 29. At a distance of approximately

50 000 km from the axis of rotation, our models require a sub-rotating region with a flow about 1% slower than in the

deep interior. This feature is not observed in the cloud motion at the surface, but is a common feature to all of our

models that match the Cassini gravity harmonics. Both the super-rotating equatoral jet, and the sub-rotating feature

are present regardless of the value we assume for the rotation period of the deep anterior.

In Fig. 10, we compare the predictions from ensembles of models that we generated with MC sampling for a range of

core radii and rotation periods for the deep interior. In panel (a), we plot the amount of heavy elements in the envelope

against the core mass. When one compares models for the same core radius of rC = 0.2, a simple trend emerges. With

increasing rotation period, the amount of heavy elements in the atmosphere decreases from approximately 4-fold to

1.2-fold the solar value (Zsolar = 0.0153 Lodders (2010)) while the core mass increases from approximately 15.3 to 16.9

Earth masses. Larger variations in the predicted core masses are seen when the fractional core radius is varied between

0.188 (rocky composition) and 0.231 (rock-ice core in Callisto’s proportion (Kuskov & Kronrod 2005). A smaller core

radius leads to a smaller core masses because the H-He mixture that surrounds that core is exposed to higher pressure,
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Figure 10. Comparison of parameters from seven sets of interior models including differential rotation. The assumed rotation
periods (Desch & Kaiser 1981; Gurnett et al. 2005; Giampieri et al. 2006; Helled et al. 2015) and fractional core radii are
indicated by the color and symbol, as specified in the legend. rC = 0.188 and rC = 0.231 correspond to cores with iron-silicate
and iron-silicate-ice compositions respectively. (a) The distribution of heavy element mass between the core and envelope.
(b) The variation of the mass fraction elements heavier than hydrogen with entropy in the inner, metallic envelope. (c) The
variation of helium mass fraction in the molecular and metallic envelopes. (d) The variation of heavy element mass fraction
in the molecular and metallic envelopes. (e) The tradeoff between heavy element and helium mass fractions in the molecular
envelope. (f) The tradeoff between heavy element and helium mass fractions in the metallic envelope. In panels (b),(c),(d),(e)
and (f) solar values (Lodders 2010) are shown with a yellow star, corresponding to an assumed end-member case with no
partitioning of helium through rain-out.



20 Militzer et al.

which increases its density and lets it mimic the behavior of the dense core to a larger extent than this is the case

in models with larger core radii. Therefore, the uncertainty of the core composition is the primary reason why the

predicted core masses vary between 15 and 18 Earth masses.

In Fig. 10b, we plot the combined enrichment in helium and heavy elements in the metallic layer against the entropy

in this layer. Since a higher entropy implies a higher temperature and thus a slightly lower density, the enrichment rises

with increasing entropy. We find the models with a very long rotation period of 10:45:45 h and 10:47:06 h are confined

to a very narrow region of available parameter space predicting the lowest enrichment and the highest entropy for the

metallic layer. The long period models appear similarly confined in Fig. 10c where they predict almost no helium rain

had occurred while models with shorter rotation periods predict various amount of helium rain. Ymol values as low

as 0.19 are included. Ymol and Ymet are tightly correlated in this figure because we assume the envelope overall has a

solar helium abundance.

In Fig. 10d, we compare the heavy element abundances in the molecular and metallic layers. Within the model

constraint of Zmet ≥ Zmol, a wide range of super-solar enrichments are predicted by our ensembles of models. There

are plenty of models with Zmet ≈ Zmol, which is in contrast to recent Jupiter models that required a different amounts

of enrichments in the two layers (Wahl et al. 2017c). In Fig. 10e and f, we plot the heavy element against the helium

abundances in the molecular and metallic layers, respectively. While both quantities are strongly correlated in the

molecular layer, there appears to be much more flexibility in the metallic layer. One reason for this is that a range

of Smet values are permitted in our models while the entropy in the molecular layer is tied to the temperature at the

1 bar level. In Fig. 10e, one can identify a consistent trend for models with longer rotation periods to predict larger

values Ymol + Zmol and thus a slightly higher density for the molecular layer.

The models with shorter rotation periods produce Ymol that are compatible with reanalyzed Voyager measurements

of atmospheric helium, ∼0.6–0.8×solar (Conrath & Gautier 2000), while the models with longer rotation rates require

less depletion of helium in the outer envelope. Observational constraints on Zmol are uncertain; Fletcher et al. (2009)

observed atmospheric methane concentrations consistent with ∼9×solar enrichment of carbon. There are no direct

measurements of the abundance of atmospheric oxygen, the heavy element with the most significant contribution to

the density and by consequence the gravity. Other heavy element ratios observations include both much lower (N/H

∼3× solar) and higher S/H ∼13× solar), although these differences might reflect model dependence in determining

the bulk elemental abundance from, or from measuring regions of the atmosphere that our not well mixed (Atreya

et al. 2019).

The models presented here predict values of both Zmol and Zmet between 1–4×solar for a uniform enrichment of all

heavy elements, which is lower than the observed enrichment in carbon. It is worth noting that in-situ measurements

of Jupiter’s atmosphere up to 22 bars by the Galileo entry probe showed significant depletion in oxygen compared to

carbon, but it is an outstanding question whether this accurately reflects the overall composition of Jupiter’s molecular

envelope. The heavy element content predicted by the models are also sensitive to temperature of the adiabat. For

Saturn, atmospheric temperature has never been measured in situ. So if Smol is higher than we expect, this tradeoff

could account for higher concentrations of heavy elements, without significantly affecting the other model predictions.

3.2. Oblateness and Rotation Period

While the rotation period of Jupiter’s interior has been determined with high accuracy from magnetic field obser-

vations, the rotation period of Saturn’s deep interior remains uncertain due to the remarkable alignment between the

dipole field and the axis of rotation. However, the rotation period used in CMS calculations of a planet significantly

affects its shape. Saturn’s oblateness, (Req −Rpolar)/Req, has been measured with radio occultation measurements of

the Pioneer and Voyager spacecraft (Lindal et al. 1985). Anderson and Schubert (Anderson & Schubert 2007) con-

structed interior models with uniform rotation that matched observed oblateness and pre-Cassini gravity coefficients

J2, J4, and J6. They derived a rotation period of 10:32:44 h, which is significantly shorter than the system III period

of 10:39:22 h (Desch & Kaiser 1981), as well as Cassini predictions of 10:45:45 h and 10:47:06 h (Giampieri et al. 2006;

Helled et al. 2015).

In Fig. 11, we compare models with differential rotation that we constructed for five different rotation periods ranging

from 10:30:00 to 10:47:06 h. For all periods, it is possible to construct interior models with differential rotation that

match all even gravity coefficients. However, the oblateness sensitively depends on rotation period that is assumed

for the planet’s deep interior. In Fig. 11, we compare the oblateness that derived from our models with the radio

occultation measurements by the Pioneer and Voyager spacecraft (Lindal et al. 1985). We find that rotation periods
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Figure 11. Oblateness derived from CMS models with different rotation periods compared to the radio occultation oblateness
measurement by Lindal et al. (1985), which determined an oblateness of 0.09822 ± 0.00018. Based on this comparison, we favor
an rotation period of 10:33:34 h ± 55 s.

of 10:33:34 h ± 55 s are consistent with these observations, which represents a modest 1-σ increase over the earlier

determination of 10:32:44 h by Anderson and Schubert (Anderson & Schubert 2007) who performed a similar analysis

based on interior models with uniform rotation. Thus, the 50 s difference can primarily be attributed to effects of

differential rotation.

Our determination of Saturn’s rotation rate is in remarkably good agreement with the value of 10:33:38 h+112s
−89s inferred

from waves observed in Saturn’s rings (Mankovich et al. 2019), even though the interior models for this analysis were

constructed without considering differential rotation.

In Fig. 12, we compare predictions from models with our preferred rotation period of 10:33:34 h to those based on

the system III rotation period of 10:39:22 h. We still predict a core mass range from 15 to 18 Earth masses, primarily

set by the uncertainty in the core composition. When we compare Figs. 10d and 12b, we find the range of Zmet is

considerably narrowed if the rotation period is set to 10:33:34 h. Most Zmet values now fall between values between 1.8

and 2.5 Zsolar while in Fig. 10d, the smaller and larger Zmet values came from models with longer and shorter rotation

periods, now disfavored because of the oblateness constraint. The Zmol values vary between 1 and 3-fold Zsolar as

before.

Finally, in Fig. 12c, Zmol and Ymol are now fairly tightly correlated when we assume a rotation period of 10:33:34 h.

These predictions can, in principle, be verified with remote observations or by an entry probe on a future missions.

4. CONCLUSIONS

We have presented an accelerated version of CMS that allows us to construct planetary interior models with many

more layers than before and also enables construction of ensembles of models using Monte Carlo methods to efficiently

optimize the parameters of individual models. We have applied this accelerated CMS method to construct models for

Saturn’s interiors with differential rotation on cylinders, which permitted us to match the unexpectedly large values

of the gravity harmonics J6, J8, and J10 that the Cassini spacecraft measured during its Grand Finale orbits around

Saturn. From our interior models we infer that Saturn has a massive core of ∼15–18 Earth masses and there are

additional heavy elements worth 1.5–5 Earth masses distributed throughout its envelope. In our models, we have
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Figure 12. Comparison of parameters from interior models with the preferred rotation rate of 10:33:34 h from this paper,
compared to the System III rotation rate (Desch & Kaiser 1981). Core radii rC = 0.188 and rC = 0.231 correspond to rocky and
rock-ice compositions respectively. (a) The distribution of heavy element mass between the core and envelope. (b) The variation
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also varied the rotation period of Saturn’s deep interior and studied the effects on Saturn’s oblateness. By matching

occultation measurements of spacecraft we predict a rotation period of 10 : 33 : 34h ± 55s for Saturn’s deep interior.
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